初一上册数学教学计划15篇
时间就如同白驹过隙般的流逝,我们的工作又迈入新的阶段,为此需要好好地写一份计划了。好的计划都具备一些什么特点呢?下面是小编精心整理的初一上册数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。
初一上册数学教学计划1一、内容和内容解析
1。内容
有理数乘法法则。
2。内容解析
有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则。
二、目标及其解析
1.目标
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法。
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性。
2.目标解析
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果。
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程。
三、教学问题诊断分析
有理数的乘法与小学学习的乘法的区别在于负数参与了运算。本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性。上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。
四、教学过程设计
问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。
问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0。
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3。
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。
教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。
追问2:根据这个规律,下面的两个积应该是什么?
3×(—2)= ,
3×(—3)= 。
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。
设计意图:让学生自主构造算式,加深对运算规律的理解。
追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的`算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0。
鼓励学生模仿正数乘负数的过程,自己独立得出规律。
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(—1)×3= ,
(—2)×3= ,
(—3)×3= 。
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。
追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。
问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(—3)×3= ,
(—3)×2= ,
(—3)×1= ,
(—3)×0= 。
追问1:按照上述规律填空,并说说其中有什么规律?
(—3)×(—1)= ,
(—3)×(—2)= ,
(—3)×(—3)= 。
设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积 ……此处隐藏18097个字……给出,我认为这个知识点还是有必要详细讲解。
(4)新教材增加“数学活动”。我们可以通过课件或者学生小组动手合作教学,引导学生体会式子比数字更具一般性。
(七)教学建议:
(1)了解整式并学好合并同类项的关键是什么?
整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。
(2)单项式与多项式有什么联系与区别?
教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。
(3)学习合并同类项的方法;
先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;
(4)什么是合并同类项中要加以注意的“两同”?
合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。
(5)其它注意事项:
①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。
②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。
③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。
④去括号时,要特别注意括号前面是“-”号的情形。
初一上册数学教学计划15教学目标:
知识与技能:初步会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。
过程与方法:利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。
情感态度与价值观:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。
教学重点:
利用有理数的混合运算解决实际问题。
教学难点:
用运算律进行简便计算。
教材分析:
本节内容是本章重点之一,《标准》中强调:重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体 情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养,因此本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。本节内容也为后继学习数学知识作必要的基本运算技能,虽注重应用,加强对学生数学应用意识和解决实际问题能力的培养;但基本的运算技能也是学习数学必不可少的。因此本节内容对学生学习数学有着非常重要的作用。
教具:
多媒体课件
教学方法:
启发式教学
课时安排:
一课时
复习引入(课件出示)
1、叙述有理数加法法则。
2、叙述有理数减法法则。
3、叙述加法的运算律。
4、符号“”和“—”各表达哪些意义?
5、—9(6);(—11)—7
(1)读出这两个算式。
(2)“、—”读作什么?是哪种符号?“、—”又读作什么?是什么符号?
把两个算式—9(6)与(—11)—7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的'加减混合运算。(板书课题2.7有理数的加减混合运算
探索新知讲授新课讲评(—9)(6)—(—11)—7
省略括号和的形式
教师针对学生所做的方法区别优劣
对此类题目经常采用先把减法转化为加法,这时就成了—9,6,11,—7的和,加号通常可以省略,括号也可以省略,即:
原式=(—9)(6)(11)(—7)
=—9 6 11—7
虽然加号、括号省略了,但—9 6 11—7仍表示—9,6,11,—7的和,所以这个算式可以读成……(教师纠正)
学生自己在练习本上计算。
先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)
让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。
教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
巩固练习
1、把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(1)(9)—(10)(—2)—(—8)3;
(2)—(—)—(—)—()
2、判断式子—7 1—5—9的正确读法是()
A、负7、正1、负5、负9;
B、减7、加1、减5、减9;
C、负7、加1、负5、减9;
D、负7、加1、减5、减9;
(二)用加法运算律计算出结果
—9 6 11—7
(三) 巩固练习
1、—4 7—4=—___—___ ___
2、6 9—15 3=___ ___ ___—___
3、—9—3 2—4=___9___3___4___2
4、— — = ___ ___ ___
1题两个学生板演,两个学生用两种读法读出结果,其他学生自行演练,然后同桌读出互相纠正。
2题抢答
按教师要求口答并读出结果
讨论后回答这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
学生运用加法交换律时,很可能产生“—9 7 11—6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。