初中数学平行四边形及其性质教案

时间:2024-07-14 18:56:43
初中数学平行四边形及其性质教案

初中数学平行四边形及其性质教案

作为一位杰出的教职工,常常要写一份优秀的教案,教案是教学蓝图,可以有效提高教学效率。那么教案应该怎么写才合适呢?以下是小编整理的初中数学平行四边形及其性质教案,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学平行四边形及其性质教案1

1.知识结构

2.重点和难点分析

重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

一个是夹在两条平行线间;

一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

3.教法建议

(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

平行四边形及其性质第一课时

一、素质教育目标

(一)知识教学点

1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

2.掌握平行四边形的性质定理1、2.

3.并能运用这些知识进行有关的证明或计算.

(二)能力训练点

1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

(三)德育渗透点

通过要求学生书写规范,培养学生科学严谨的学风.

(四)美育渗透点

通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

二、学法引导

阅读、思考、讲解、分析、转化

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形性质定理的应用

2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

四、课时安排

2课时

五、教具学具准备

教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

六、师生互动活动设计

教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

第一课时

七、教学步骤

【复习提问】

1.什么叫做四边形?什么叫四边形的一组对边?

2.四边形的两组对边在位置上有几种可能?

教师随着学生回答画出图1)

图1

【引入新课】

在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

【讲解新课】

1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

2.平行四边形的表示:平行四边形用符号“

”表示,如图1就是平行四边形

,记作“

”.

align=middle>

图1

3.平行四边形的性质

讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

平行四边形性质定理1:平行四边形的对角相等.

平行四边形性质定理2:平行四边形对边相等.

(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

图2如图3

所以四边形是平行四边形,所以.由此得到

推论:夹在两条平行线间的平行线段相等.

图3

要注意:必须有两个平行,即夹两条平行线段的'两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4

4.平行线间的距离

从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

图5

注意:(1)两相交直线无距离可言.

(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

例1 已知:如图1,

初中数学平行四边形及其性质教案2

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1和2,并能运用这些知识进行有关的证明或计算。

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点。

教学重点、难点

重点:平行四边形的概念及其性质。

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:

讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1、复习四边形的知识。

(1)引导学生画任意凸四边形,指出它的主要元素??顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究。

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别。

2、教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11。

3、对比引出平行四边形的概念。

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题。

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性)。同时它还具有一般四边形不具备的特殊性质(个性)。

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质。

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12。

①∵ABCD,∴AD∥BC,AB∥CD。(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形。(平行四边形的定义)

练习1 (投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__。

二、探索平行四边形的性质并证明

1、探索性质。

启发学生从平行四边形的主要元素??边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法。

2、利用化归的方法对性质逐一进行证明。

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③。

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤。

(3)写出证明过程。

3、关于“两条平行线间的平行线段和距离”的教学。

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等。

①提问:在图4-14中, l 1∥ l 2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明。

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用。证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等。

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习。

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义。

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离。

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的距离是线段__或__的长;

④由推论可得:两条平行线间的距离__。

三、平行四边形的定义及性质的应用

1、计算。

例1填空。

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式。

2、证明。

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF。求证(1)BE=DF;(2)EF过BD的中点。

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等。

(2)考虑特殊化情形。在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF。在题目的变化与联系中灵活选用性质来解题。

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC。求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点。

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明。对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明。

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F。求证:OE=OF,AE=CF,BE=DF。

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF。

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等。

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的。

3、供选用例题。

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线。如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F。求证:AE=FC。

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB。求证:EC⊥FD。

四、师生共同小结

1、平行四边形与四边形的关系。

2、学习了平行四边形哪些方面的性质?

3、两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题。

课堂教学设计说明

本教学设计需2课时完成。

这节内容分2课时。第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性。第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华。

《初中数学平行四边形及其性质教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式